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ABSTRACT

The effects of elevated free-stream turbulence and streamwise
acceleration on flow and thermal structures in transitional boundary layers
have been investigated experimentally on a heated flat plate. The effects
on the turbulent Prandtl number and Reynolds analogy were included in
this study. The free-stream turbulence levels ranged from 0.5 to 7%, and
the acceleration strengths, based on K (=(v/Tu2)dl/dx), ranged from
0.39x10-6 to 4.1x10-6. A three-wire probe was used to measure the
detailed momentum and thermal boundary layer structures, including the
streamwise and cross-stream velocity fluctuations, the temperature
fluctuation, the Reynolds stresses, the Reynolds heat fluxes, the eddy
viscosity, the turbulent thermal diffusivity and the turbulent Prandtl
number. The results show that elevated free-stream turbulence values
result in an earlier onset of transition and reduced iength of transition,
whereas streamwise acceleration delays the onset of transition and
lengthens the transition region, even at elevated FSTI. Compared to
streamwise acceleration, FSTI is the more dominant factor on flow and
thermal structure in transitional boundary layers; however, streamwise
acceleration significantly reduces the turbulent spot formation rate. A
conditional sampling technique was utilized to separate the flow into the
turbulent and nonturbulent portions. An analysis of flow and thermal
structures was performed in each portion separately.
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EXECUTIVE SUMMARY

Introduction_and Statement of Work

A multi-year project to investigate the flow and thermal structures in
the transitional boundary layer was performed during a period from 1989
to 1993. A detailed description of the program and its results are written
as a final technical report submitted to the Office of Naval Research (see
publication on page 9). Only a summary is provided in this final report.

Transitional boundary layer theory is heavily dependent upon the
results of experimental studies. Most reported experimental studies of the
effects of elevated free-stream turbulence intensity (FSTI) and its combined
effects with streamwise acceleration on boundary layer transition
investigated only the onset and end of transition. The results of the few
experimental investigations which detailed boundary layer measurements
were made with elevated free-stream turbulence effects and its combined
effects with streamwise acceleration are insufficient to represent the flow
and thermal boundary layer characteristics resulting from these effects.

The main objective of this study is to investigate experimentally the
effects of elevated free-stream turbulence and its combined effects with
streamwise acceleration on the flow and thermal structures, including on
the turbulent Prandtl number and the Reynolds analogy in the transitional
boundary layers with the following specific goals:
(1) to document and investigate these effects on the onset and end of
transition, the mean and RMS velocity and temperature profiles, the
Reynolds shear stress, the Reynolds heat fluxes and the turbulent Prandtl
number in the transitional boundary layer flows,
(2) to investigate the incoherence between the momentum and the thermal
transport in the transition region under the separate and combined effects
of elevated free-stream turbulence and favorable pressure gradients, and
(3) to use a conditional sampling technique to obtain the intermittency
distributions and to investigate the flow and thermal behavior in the
separated nonturbulent and turbulent portions of a transitional boundary
layer.




In order to investigate the effects of elevated free-stream turbulence
and streamwise acceleration on the flow and thermal structures in the
transitional boundary layers, two kinds of measurements were performed :
(1) the heat transfer and skin friction on the wall and (2) the detailed
boundary layer measurements using a miniature 3-wire probe. The
elevated FSTI required for this study are generated by three turbulence
generating grids with different mesh widths. The streamwise acceleration
parameter, K, is kept constant in the test section by setting the test section
into a wedge shape. For the streamwise accelerating case, the wall heat
transfer measurements of sixteen cases were made first. Then four
accelerating cases were chosen for detailed boundary layer measurements.
The highest K value is 4.1 x 10 -6, In total, eight cases with detailed
measurements were investigated at different FSTI and streamwise pressure
gradients K :

Baseline Case : No Grid, FSTI = 0.5%, K = 0 (shared with Keller.
1993)

G1KO Case : Grid 1, FSTI=3.3%,K=0

G2KO Case : Grid 2, FSTI=5.6%,K=0

G3K0 Case : Grid 3, FSTI=64%,K =0

G1K1 Case : Grid 1, FSTI=3.8%,K=0.39x10-6

G1K2 Case : Grid 1, FSTI=3.8%,K=083x10-6

G3K2 Case : Grid 3, FSTI=64%,K=083x10-6

G3K3 Case : Grid 3, FSTI=6.4%,K =1.00x10-6.

For each case, the following physical entities are collected and
reduced : (a) the momentum transport (Mean velocity profiles, Reynolds
normal and shear stresses, intermittency across the boundary layer and
along the streamwise direction, integral and dissipation length scales,
turbulence and thermal power spectra, eddy diffusivity and skin-fricuon
coefficient) and (b) the thermal transport (Mean and rms temperature
profiles, Reynolds heat fluxes, turbulent thermal diffusivity, Stanton
number and turbulent Prandtl number).
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Experimental Facility and Equipment
Wind Tunnel

The present research employed a 2-D, open-circuit, blowing-type
wind tunnel. The detailed description of the design considerations and the
construction specifications were documented by Kuan (1987) and Kuan &
Wang (1990). Air is drawn through a filter box, then forced through two
grids, a honeycomb, a heat exchanger, a screen pack and a contraction
nozzle before entering the test section (Fig. 1). The flow rate can be
adjusted steplessly from 0.5 m/s to 35 m/s by the combined use of an inlet
damper and a constant-torque, variable frequency motor controller. The
steadiness of the free-stream velocity and temperature can be maintained
within 1% and 0.59C for a 24-hour period, and the uniformity is within
0.7% and 0.19C, respectively.

T tion

The rectangular test section is 0.15m wide, 2.4m long and 0.92m
high with an aspect ratio of 6. The large aspect ratio reduces edge effects
and ensures the two dimensionality of the boundary layer flow. One of the
test section walls served as the test wall (Fig. 2). The heat patch inside the
test wall was constructed of a serpentine heater foil sandwiched between
glass cloth and silicon rubber sheets. A 1.56 mm thick aluminum sheet was
vulcanized to the front surface of the heater pad to ensure uniformity of
the heat flux. A 1.56 mm polycarbonate sheet was placed on the aluminum
surface to provide a smooth test surface on which the air flows and
measurements were taken. The surface temperature was measured by 184
3mil E-type thermocouples which were embedded strategically inside the
test wall to capture the streamwise and spanwise variation of wall heat
transfer in a transitional boundary layer (Fig. 3). Fourteen measuring
holes were drilled along the outer observation wall centerline in the test
section and measurements were obtained by traversing the probe through
these holes into the test section. Boundary layer suction was applied at the
leading edge of the test section so that a near zero thickness boundary layer
can be achieved at the leading edge. The detailed construction consideration
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and description of the heated test wall are contained in Wang et al. (1992)
and Zhou (1993).

Turbulen eneratin rid

The background FSTI of this wind tunnel was about 0.5 percent. The
higher turbulence levels required for this study were generated by
inserting various turbulence generating grids into the wind tunnel. The
turbulence generating grids consisted of bi-plane rectangular bar arrays
with approximately a 69% open area (Fig. 4). The grids were designed
based on the recommendation of Baines and Peterson (1951) to produce
test section turbulence levels ranging from approximately 3 to 7%. Grid
generated turbulence decays with distance from the grid. The decaying rate
becomes smaller when the distance from the grid increases. In order to
generate homogeneous and slowly decaying turbulence, the turbulence
generating grids were inserted at the entrance to the main tunnel
contraction instead of placing them at the inlet of the test section. The grids
are referred to as grid 1, 2, and 3, corresponding to the mesh widths, M,
of 19.05, 24.13 and 33.02 cm, respectively. The test case with only
background turbulence (no grid) served as the baseline case.

Flow Acceleration

In this experiment, the streamwise acceleration parameter, K, is kept
constant in the test section simply by setting the test section into a wedge
shape. It should be noted that a constant K flow is inherently different from
a Falkner-Skan flow, which has a constant A (=(82/v)dUe/dx) value (see
discussion by Zhou and Wang, 1992).

Three-Wire Probe

A three-wire sensor was specifically designed to measure
simultaneously the instantaneous longitudinal velocity, cross-stream
velocity and the temperature. The development and qualification of this
three-wire sensor was described by Shome (1991) and Wang et al. (1992).




Basically, an 'X' array, consisting of gold plated tungsten wires 1.0 mm
long and 2.5 pum in diameter, is used for measuring velocity. The sensing
length is 0.5 mm and is etched in the center (Fig. 5). The spacing between
the 'X' array is 0.35 mm. The temperature sensor is a 0.35 mm long (with
a sensing length of 0.35 mm) and a 1.2 um diameter unplated platinum
wire placed in a plane parallel to the plane of the crossed wires and spaced
0.35 mm from the 'X' array. To allow for near-wall measurement and to
reduce probe interference, the probe support was bent at an angle of 100
from the wire axis. However, the x-wires are still perpendicular to each
other.

To sufficiently extend the length of transition for detailed
measurements on the test wall, extremely low-speed flows down to 1.7 m/s
are provided for elevated FSTI cases. At this low speed, relatively low
overheat ratios for the x-wires are required to minimize the "cross-talk"
between the x-wires and the temperature sensor (Zhou and Wang, 1993).
The X-wires are operated at an overheat ratio of about 1.2 (hot wires) in
the constant temperature mode. The 1.2 um platinum wire is operated at a
very low current of 0.1 mA (cold wire) in the constant current mode.

Summary of Results

Summary of Elevated Free-stream Turbulence Effects

Low free-stream velocities ( ~ 2 m/s) were used to obtain a sufficient
laminar-turbulent transition region. Wall heat transfer measurements
indicated that elevated FSTI values result in an earlier onset of transition
and reduced length of transition in terms of Rex, Reg*, and Reg (Fig. 6,
Table 1). The calculated turbulent spot formation rates at elevated FSTI
cases agree with Mayle's correlation (Fig. 7). In the turbulent region. the
mean velocity and temperature profiles demonstrate the logarithmic "law
of the wall" characteristics over a sufficient range of Y+ (30~300) (Figs. 8
& 9). The wake regions are completely depressed.

The u' distribution is significantly elevated across the entire
boundary layer in the laminar and turbulent regions due to elevated FSTI
(Fig. 10). In the transitional region, the maximum Reynolds normal




stresses, which reflect the bursting activities in the boundary layer, are
higher than the baseline case but are limited to approximately u'/Uoo=20%.
The u'/Uoo distribution in the turbulent region is found to be affected by the
low Reynolds number (Fig. 11). The peak value of u'/Us is higher for
lower Reynolds number. The evolution of the rms temperature fluctuation
is similar to the u' with elevated values across 80% of the boundary layer
(Fig. 12).

The v' distribution in the outer boundary layer is controlled by the
magnitude of v' in the free stream (Fig. 13). The typical near-wall peak of
v', which appears in the transition region at low FSTI, is not observed. In
the turbulent region, the very near-wall peak of v' is suppressed and the
largest v' value occurs away from the wall in elevated FSTI cases. This
implies that elevated FSTI does not affect near-wall v' as it does to u'.

The evolution of the uv distribution at elevated FSTI is similar to that
at low FSTI (Fig. 14). In the transition region, Reynolds shear stress is
produced not in the near-wall region where the vigorous turbulence
production of u’ occurs but away from the wall, at about y/8=0.3. This
high turbulent shear progresses toward the wall and eventually affects the
wall shear.

The -ut/{q"y/pCp} distributions are elevated in the laminar and

turbulent regions but are reduced in the transitional region at higher FSTI
(Fig. 15). Since both u' and t' are higher in the elevated FSTI case than the
baseline case, this indicates that the correlation between u and t at low FSTI
is much better than that at elevated FSTI in transitional boundary layer
. flow.
V The vt distributions reach maximum values in the transition region
slower than the evolution of uc (Fig. 16). The regions of negative values of
vt occur in the transition region in the baseline case and are not observed
in the elevated FSTI cases.

In the near wall region (y/8<0.2), the turbulent Prandtl number
values are large (>2) (Fig. 17). In the region of y/6=0.2 ~ 0.8, the
turbulent Prandtl number values are close to 1.2 ~ 1.6. These higher
turbulent Prandtl numbers in the transitional and low-Reynolds-number
turbulent flow should be considered in the numerical modeling of
transitional boundary layers.




mmary of Combined Eff of Elevated Free-Stream Turbulence and

Streamwise Acceleration

Wall heat transfer measu.tements indicated ihat elevated FSTI values
result in an earlier onset i transition and reduced length of transition,
whereas the streamwise accelerations delay the onset of transition and
lengthen the transition region even at elevated FSTI (Figs. 18, 19 & 20.
Table 2). A mild acceleration has a significant effect on onset and end of
transitior,, whereas further increasing acceleration does not significantly
augment its effect on onset of transition (Fig. 21).

At elevated FSTI, the streamwise acceleration has a negligible eftect
on T, u', v', t've, and Prt distributions and has a mild effect on ur
distributions across the boundary layers (Figs. 22, 23, 24, 25, 26. 27 &
28). A noticeable effect of acceleration on the flow structure can be seen in
both U and the uv distributions (Figs. 29 & 30). Overall, in the range of
FSTI tested by this study(3~7%), the effect of FSTI is more pronounced
than that of the acceleration on the onset of transition; however, the effect

of acceleration on the length of transition cannot be ignored, especially at a
higher FSTI, at which the end of transition Rex is about ten times of the

onset of transition Rey for K>0.83x10-6 (Figs. 18 & 19).

Summary of Conditional Sampling Results

The streamwise evolution of the intermittency factor profiles across
the boundary layer are processed for the present experimental cases. The
detailed conditional sampling results for the baseline case were documented
by Keller (1993). The (duv/dt)2 is chosen as the criterion function. The
method for determining the threshold value and the intermittency factor is
explained by Zhou (1993). Similar to the conditional sampling results of
the baseline case, (a) the threshold values of (duv/dt)2 have a nearly
constant value regardless of the streamwise and cross-stream location (Fig.
31); (b) the intermittency varies across the boundary layer and has a
maximum value away from the wall in the boundary layer for all elevated
FSTI and accelerating cases (Figs. 32a,b,c.d.e.f.g); (¢) the skin friction in




the nonturbulent and turbulent portions do not behave as a simple extension
of laminar and turbulent flow respectively (Fig. 33).

The conditionally sampled statistical results for all the mean and
turbulent structures are presented. At elevated FSTI, the magnitudes of u',
t' and ut in the turbulent part are about the same as those in the non-
turbulent part (Figs. 34, 35 & 36). However, the magnitudes of v’ in the
turbulent part are much higher than those in the nonturbulent part (Fig.
37).
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NOMENCLATURE

Cs = skin friction coefficient, tw/(pﬁm2/2)

FSTI = free-stream turbulence intensity, v/ wiev /0.
K = streamwise acceleration parameter, (v/U wz)dﬁmldx
n = turbulent spot production rate (no./(m-s))
7 = dimensionless turbulent spot production rate, nv2/t..3
Pr¢ = turbulent Prandtl number, ep/ey
" = heat flux
Rex,Red*,Reg= Reynolds numbers based on x, 6* & 6
St = Stanton number, q"w/[pCpUea(Tw-T=)]
t = instantaneous temperature fluctuation or time
"= rms value of t
T = mean temperature
T+ = mean temperature in wall units, (Tw-T)pcpu*/q”w
u, v = instantaneous streamwise & cross-stream velocity fluctuations
u', v' = rms values of u & v
u’ = Yt./p friction velocity
U = mean streamwise velocity
U+ = mean streamwise velocity in wall units
x = streamwise distance from leading edge
Xo = unheated starting length

y = distance away from the wall

Yt =yutiv

o = thermal diffusivity
§ = boundary layer thickness at 0.9950..

d* = displacement boundary layer thickness
8 = momentum boundary layer thickness

I' = intermittency

A = (82/v)du/dx

v = kinematic viscosity

p = density

¢ = turbulent spot propagation parameter
T = shear stress

oo

o




Subscripts

e = at the end of the transition
s = at the start of the transition
w = at the wall

oo = in the free-stream
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Table 1 Reynolds Numbers at Onset and End of Transition

(Baseline Case and Three Elevated FSTI Cases Without Acceleration)

Baseline GIKO G2KO G3K0
FSTI at X 0.5% 3.8% 5.5% 6.4%
Uo, (m/5) 13.0 2.10 | 1.75 1.70
x(cm) 61 45 45 42
Onset of Rey 50x107 60x 104 s0x104 45x 104
Transition Reg+ 1183 386 35S 34
Reg 434 161 148 131
x(cm) 136 150 144 139
End of Rey ILIx106 20x 107 1.6x 105 15x 108
Transition Reg+ 1947 735 659 608
Reg 1327 480 404 375
x(cm) 75 105 99 97
Length of Rey 60x105 14x105 1.1x 105 10x 105
Transition Regs 764 349 304 294
Reg 893 319 256 244




Table 2 Reynolds Numbers at Onset and End of Transition

(Four Accelerating Cases)
GIK1 GIK2 G3K2 G3K3
FSTI at X 0.5% 3.8% 5.5% 6.4%
K x 10 -6 0.39 0.83 0.83 |
x(cm) 62 77 47 02
Onset of Rey x 10 > 0.9 1.2 0.7 0.8
Transition Reg» 489 505 414 425
Reg 196 210 169 175
x(cm) 182 ++ 182 ++ 182 ++ 182 ++
End of Rexx 10 7 50+ 6.0+ 8.5+ 1+
Transition Reg« 1032 ++ 901 ++ 766 *+ S68 T+
Reg 681 *+ 563 ++ 453 ++ 301 *+
x(cm) 120 ++ 105 ++ 135 ++ 120 ++
Length of Reg x 10 41+ 48+ 78 + 102+
Transition Reg« 543 ++ 396 ++ 352 ++ 143 ++
Reg 485 ++ 353 ++ 271 ++ 119 ++

+ Data obtained from the extrapolation of Stanton number distributions

++ Data obtained st Station 12 when transition is not completed.
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Fig. 28 Streamwise Reynolds Heat Flux Distribution for G3K3 Case
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Fig. 32b Intermittency Distributions, G1K1 Case
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